Tyrosine phosphorylation of the Kv1.3 potassium channel.
نویسندگان
چکیده
Kv1.3, a voltage-dependent potassium channel cloned from mammalian brain and T lymphocytes, contains multiple tyrosine residues that are putative targets for tyrosine kinases. We have examined the tyrosine phosphorylation of Kv1.3, expressed transiently in human embryonic kidney (or HEK) 293 cells, by endogenous and coexpressed tyrosine kinases. Tyrosine phosphorylation is measured by a strategy of immunoprecipitation followed by. Western blot analysis, using antibodies that specifically recognize Kv1.3 and phosphotyrosine. Coexpression of the constitutively active tyrosine kinase v-src, together with Kv1.3, causes a large increase in the tyrosine phosphorylation of the channel protein. This phosphorylation of Kv1.3 can be reversed by treatment with alkaline phosphatase before Western blot analysis. Coexpression with a receptor tyrosine kinase, the human epidermal growth factor receptor, also causes an increase in tyrosine phosphorylation of Kv1.3. The effects of endogenous tyrosine kinases were examined by treating Kv1.3-transfected cells with the specific membrane-permeant tyrosine phosphatase inhibitor pervanadate. Pervanadate treatment causes a time- and concentration-dependent increase in the tyrosine phosphorylation of Kv1.3. This increased tyrosine phosphorylation of Kv1.3 is accompanied by a time-dependent decrease in Kv1.3 current, measured by patch-clamp analysis with cell-attached membrane patches. The pervanadate-induced suppression of current and much of the channel tyrosine phosphorylation are eliminated by mutation of a specific tyrosine residue, at position 449 of Kv1.3, to phenylalanine. Thus, there is a continual phosphorylation and dephosphorylation of Kv1.3 by endogenous kinases and phosphatases, and perturbation of this constitutive phosphorylation/dephosphorylation cycle can profoundly influence channel activity.
منابع مشابه
Tyrosine phosphorylation modulates current amplitude and kinetics of a neuronal voltage-gated potassium channel.
The modulation of the Kv1.3 potassium channel by tyrosine phosphorylation was studied. Kv1.3 was expressed in human embryonic kidney (HEK 293) cells, and its activity was measured by cell-attached patch recording. The amplitude of the characteristic C-type inactivating Kv1.3 current is reduced by >95%, in all cells tested, when the channel is co-expressed with the constitutively active nonrecep...
متن کاملModulation of the Kv1.3 Potassium Channel by Receptor Tyrosine Kinases
The voltage-dependent potassium channel, Kv1.3, is modulated by the epidermal growth factor receptor (EGFr) and the insulin receptor tyrosine kinases. When the EGFr and Kv1.3 are coexpressed in HEK 293 cells, acute treatment of the cells with EGF during a patch recording can suppress the Kv1.3 current within tens of minutes. This effect appears to be due to tyrosine phosphorylation of the chann...
متن کاملModulation of olfactory bulb neuron potassium current by tyrosine phosphorylation.
Insulin causes a suppression of whole-cell voltage-dependent outward current in cultured neurons from the rat olfactory bulb. This suppression is time-dependent; it is mimicked by application of Src tyrosine kinase inside the cell via the whole-cell patch electrode or by treatment of the olfactory bulb neurons with the tyrosine phosphatase inhibitor pervanadate. The C-type inactivation properti...
متن کاملPost-synaptic density perturbs insulin-induced Kv1.3 channel modulation via a clustering mechanism involving the SH3 domain.
The olfactory bulb (OB) contains the highest concentration of the insulin receptor (IR) kinase in the central nervous system; however, its functional role and modulation in this region remains poorly understood. IR kinase contains a number of proline-rich motifs, making it an excellent candidate for modulation by SH(3) domain-containing adaptor proteins. Kv1.3, a voltage-gated Shaker potassium ...
متن کاملKv1.3 Channel Gene-Targeted Deletion Produces “Super-Smeller Mice” with Altered Glomeruli, Interacting Scaffolding Proteins, and Biophysics
Mice with gene-targeted deletion of the Kv1.3 channel were generated to study its role in olfactory function. Potassium currents in olfactory bulb mitral cells from Kv1.3 null mice have slow inactivation kinetics, a modified voltage dependence, and a dampened C-type inactivation and fail to be modulated by activators of receptor tyrosine signaling cascades. Kv1.3 deletion increases expression o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 5 شماره
صفحات -
تاریخ انتشار 1996